See the parametric bootstrap algorithm in Politsch et al. (2020a) for details.

bands(obj, param, level = 0.95)

Arguments

obj

An object of class "polarized_spectrum", produced by denoise_spectrum().

param

A string specifying which spectrum to compute variability bands for. One of c("I","Q","U","Q_norm","U_norm").

level

The level of the pointwise variability bands. Defaults to level = 0.95.

Value

A list of obj$n_segments tibbles, each with the column set c("wavelength","bootstrap_lower_band","bootstrap_upper_band").

References

  1. Politsch et al. (2020a). Trend filtering – I. A modern statistical tool for time-domain astronomy and astronomical spectroscopy. MNRAS, 492(3), p. 4005-4018.

  2. Politsch et al. (2020b). Trend Filtering – II. Denoising astronomical signals with varying degrees of smoothness. MNRAS, 492(3), p. 4019-4032.

See also

Examples

data(polarized_spectrum_WR_star) wavelength <- seq( from = sci$axDat$crval[1], by = sci$axDat$cdelt[1], length = sci$axDat$len[1] ) flux <- as_tibble(sci$imDat) variance <- as_tibble(var$imDat) %>% select(1:3) mask <- as_tibble(bpm$imDat) spec_denoised <- denoise_spectrum( wavelength, flux, variance, mask, compute_uncertainties = TRUE ) spec_bands <- bands(spec_denoised, param = "Q_norm")